SAPPHO: Spectroscopic Analysis of Phobos Plus HD Orbital survey

Dakota Richline (Solo)

Department of Aerospace, Physics, and Space Sciences, Florida Tech AEE 4806: Space Mission Engineering Dr. Paula do Vale Pereira SAPPHO: Spectroscopic Analysis of Phobos Plus HD Orbital survey

Mission Concept

The Decadal Strategy had a number of interesting questions, and those involving interplanetary science stood out to me. I originally wanted my mission to test a VASIMR in space for the first time—e.g. a resurrection of the cancelled ISS-VASIMR mission—but it seemed inappropriate for most of the proposed questions. I chose question Q3.4: "WHAT PROCESSES YIELDED MARS, VENUS, AND MERCURY AND THEIR VARIED INITIAL STATES?" (Origins, pp 167)

Most of the sub-questions would make for a very interesting scientific mission to improve Humanity's understanding of Mars and its origin:

- 1. How similar is Mars's chemical composition to that of its satellites?
- 2. What events could have created the surface features of Phobos and Deimos?
- 3. What is the background radiation on the surface of Phobos and Deimos as compared to Mars, and what isotopes does it originate from?
- 4. Is there any matter orbiting the Martian satellites?
- 5. Why do Phobos and Deimos resemble asteroids more than other planetary moons?
- 6. Do Mars's satellites have an internal structure similar to Mars's metal core and rocky crust?
- 7. Could Phobos and Deimos contain ice underneath their regolith?
- 8. Do Mars's satellites have any seismic activity?

I decided to answer questions 1, 3, and 8 with a Phobos lander mission; little is known about Mars's strange asteroid-like moons and a reconnaissance mission would be very enlightening. I chose Phobos for some of its mysterious properties (irregular shape/size, very fast orbit, and unknown composition), and to visit a body for the first time while developing a novel method of landing akin to docking with an asteroid.

Hypothesis: Performing an orbital survey of Phobos and studying its composition using lander-mounted mass and gamma spectrometers will greatly improve understanding of how Mars's moons were formed, as well as techniques for asteroid surface operations.

Mission Objective: Perform an impulsive (no aerobraking) Mars transfer and Phobos rendezvous, take RADAR and visual scans of the surface, land on Phobos, and study the composition of its unique regolith.

Success Criteria: Successful rendezvous and orbital survey, successful landing, and deployment of scientific instruments on the surface

Mission Architecture and Design Drivers

The main scientific objectives for Sappho are imaging Phobos and analyzing the composition of its regolith. Therefore, the main scientific payloads are visual and radar sensors as well as the mass spectrometer and its supporting equipment. Secondary payloads include sensors such as a seismometer and collaborative rideshare instruments, taking advantage of the relatively large 500 kg mass budget. There must be a system to collect regolith samples and transfer them to the mass spectrometer, using a method similar to Curiosity's SAL analysis lab. A gamma spectrometer/scintillator will be used to very precisely (relative to a Geiger tube) measure Phobos's surface radioactivity compared to Mars and determine the unstable isotopes present by counting gamma decays and their intensity via the photoelectric effect. A linear actuator will push the scintillation probe firmly against the regolith.

The mission originally included an orbiter and lander, but an orbiter cannot work: Phobos's SOI (7.2 km) is smaller than its radius (11 km), making orbit impossible. It also may not fit into the 500 kg mass budget. Further, the orbital period would be in the tens of seconds at most based on a gravitational parameter $\mu = 0.7127 \,\mathrm{km^3/s^2}$ [¹] and Osirus-REx's 6.5 km orbit, presenting many challenges for solar power and communications.

To visit Phobos from Earth, there are several requisite orbits in three spheres of influence: Mars Transfer Orbit (MTO) in Earth's SOI; correction burns in the Sun's SOI; Mars capture orbit; and the elliptical Hohmann orbit with a periapsis kick to rendezvous with Phobos. Because Phobos is tidally locked, Sappho must land on the far side to have solar power and a line of sight to Earth, and Earth must not be occluded by the Sun. Apsidal rotation does not affect the capture or Phobos orbit, but J_2 effects will cause nodal rotation in both the capture and Phobos orbits; once Sappho is in rendezvous it will precess at the same rate as Phobos. I couldn't find a plot of nodal rotation vs altitude and inclination for Mars, but Sappho should be able to take advantage of the difference in nodal rotation rates to align its orbital plane with that of Phobos prior to rendezvous.

Based on Patched Conics and a Hohmann transfer from Mars capture to Phobos rendezvous, Sappho's service module must have a Δv of at least 3.2 km/s: 1.9 km/s for the capture orbit and 0.9 km/s for the Phobos transfer and rendezvous, with 0.4 km/s margin for correction burns. Main propulsion is provided by Orion's European Service Module using an AJ10 engine, modified from the ATV ISS resupply vehicle. It requires slight modification: replace its 360 kg of life support supplies with propellant. Removing all life support equipment would further improve the Δv budget, but this was neglected since the exact mass is unknown. With the 500 kg lander, Sappho has a Δv budget of 3200 m/s and can be launched by an expendable Falcon Heavy (maximum 16.8 tons to Mars transfer).

¹ https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009GL041829

Figure 1. Diagram of capture orbit and Hohmann transfer

Figure 2. Mockup of Sappho and ESM to demonstrate their scale

Communication with Earth will use NASA's DSN on the X-band using a dual-gimbal (Az-El rotor) antenna. X-band is reserved for interplanetary satellites and has heritage in other Martian spacecraft; bandwidth should not be an issue because Sappho's total data budget (6 GB) is derived from the size of Curiosity's photo archive² divided by the time spanned by said archive. Several Martian satellites such as the Mars Reconnaissance Orbiter have a UHF to X-band relay, but they likely cannot be used. Phobos's orbit of 9376 km is much higher than MRO's \approx 300 km orbit, and the lander will point zenith rather than nadir towards the satellites; line of sight to Mars will be blocked by Phobos. UHF also has significant doppler shift at 400 km above Earth (\approx 5 kHz), which could make UHF impractical at \approx 9000 km even if Sappho had line of sight to the relays. The DSN can maintain a connection regardless of Earth's rotation, which is vital for high-gain communication systems with a very narrow emission pattern; gimbling the antenna will allow it to track Earth passes from its perspective.

Code (Next Page)

 $^{^2}$ Public domain photo archive:

https://academictorrents.com/details/9d00cae359b90a2647c6b0971325219dad8d05c7

Sappho Part 1 Code: Mars Transfer and Phobos Rendezvous

Patched Conics and Capture

1 md""" # Sappho Part 1 Code: Mars Transfer and Phobos Rendezvous
2 # Patched Conics and Capture"""

- ▶ (1.32712e11, 0.7127, 398600, 42828, 9376, 1.0659e16, 6.4171e23, 1.496e8, 2.279e8, 6378, 3
- 1 *# Define variables*
- 2 μ_sun, μ_phobos, μ_earth, μ_mars, a_phobos, m_phobos, m_mars, R_E, R_M, r_E, r_M, r_park₁ = 132712e6, 0.7127, 398600, 42828, 9376, 1.0659e16, 6.4171e23, 149.6e6, 227.9e6, 6378, 3396, 150

SOI_phobos = 7.247173535045903

1 SOI_phobos = a_phobos * (m_phobos/m_mars)^(2/5)

NOTE: SOI is less than radius (11 km), therefore orbit is impossible

1 md"""NOTE: SOI is less than radius (11 km), therefore orbit is impossible"""

ΔV_budget = 3197.145197514107

```
1 ΔV_budget = 319 * 9.81 * log((13500+500)/(13500 + 500 - 8960))
```

2 # https://en.wikipedia.org/wiki/European_Service_Module

NOTE: slightly modified ESM without life support

1 md"""NOTE: slightly modified ESM without life support"""

Departure

1 md""" ## Departure"""

V_E = 29.78443048750875

```
1 V_E = sqrt(\mu_sun/R_E)
```

a_transfer = 1.8875e8

1 a_transfer = $(\underline{R}\underline{E} + \underline{R}\underline{M})/2$

T_transfer = 258.8281293883917

1 T_transfer = $\pi * sqrt(a_transfer^3/\mu_sun) / (3600*24) # [day]$

V_Ev = 32.72788818661612

1 $V_Ev = sqrt(\mu_sun*(2/R_E - 1/a_transfer))$

V∞₁ = 2.9434576991073698

1 V∞₁ = <u>V_Ev</u> - <u>V_E</u>

V_circ1 = 7.814092974850494
1 V_circ1 = sqrt(µ_earth / (r_E + r_park1))

 $V_pE = 11.436085049773377$ 1 $V_pE = sqrt(V_{\infty_1}^2 + 2\mu_earth / (r_E + r_park_1))$

 $\Delta V_D = 3.6219920749228827$

 $1 \Delta V_D = V_pE - V_circ_1$

Arrival

1 md"""## Arrival"""

V_A = 24.13142311168881

1 V_A = sqrt(μ _sun/R_M)

 $V_Av = 21.48351063061769$

1 $V_Av = sqrt(\mu_sun * (2/R_M - 1/a_transfer))$

 $V_{\infty_2} = 2.6479124810711205$ 1 $V_{\infty_2} = V_A - V_A v$

r_p_optimal = 32348.501173026252

- 1 # Circular capture orbit: e=0
- 2 r_p_optimal = $2\mu_mars/V_{\infty 2}$

 $V_pM = 3.107949965569481$

1 V_pM = sqrt($V_{\infty_2}^2$ + 2µ_mars/r_p_optimal)

V_cM = 1.1506329738607182

1 V_cM = sqrt(µ_mars/r_p_optimal)

 $\Delta V_A = -1.9573169917087627$

1 ΔV_A = V_cM - V_pM # Retrograde

 $\Sigma \Delta V = 5.579309066631645$

1 ΣΔV = abs(ΔV_D) + abs(ΔV_A)

Phobos Rendezvuos

```
1 md""" # Phobos Rendezvuos"""
```

0.9033576177478388

```
1 let \mu_{mars} = 42828, r_1 = r_p_optimal, r_2 = a_phobos

2 v_c_1 = sqrt(\mu_mars/r_p_optimal)

3 a_e = (r_1 + r_2)/2

4 v_e_a = sqrt(\mu_mars * (2/r_p_optimal - 1/a_e))

5 \Delta V_1 = v_e_a - v_c_1 \# -0.379 \ km/s \ Retrograde

6

7 v_e_p = sqrt(\mu_mars * (2/r_2 - 1/a_e))

8 v_c_2 = sqrt(\mu_mars/r_2)

9 \Delta V_2 = v_c_2 - v_e_p \# -0.524 \ km/s \ Retrograde

10

11 \Sigma \Delta V = abs(\Delta V_1 + \Delta V_2) \# 0.903 \ km/s \ Total

12 end
```

Requirements and CONOPS (Next Page)

ID	REQ Short Name	Mission Requirements	Rationale	Verification
		Before landing, Sappho shall successfully		
		capture 10 visible spectrum images evenly	A map of Phobos is useful	
		spaced around Phobos (36 degree	scientific data, and will help	
MIS_REQ_01	Visible Images	spacing)	choosing a landing site	Analysis, Test
			Topographic images are also	
		Before landing, Sappho shall construct a	useful data and will help ensure	
MIS_REQ_02	RADAR Images	topographic map of Phobos's equator	the landing site is appropriate	Analysis
			Communication times are too long	
		3-axis attitude control on orbit shall be	for manual operation. Neither	
		maintained automatically and in absence	Mars nor Phobos have a magnetic	
MIS_REQ_03	Attitude Control	of a magnetic field	field	Analysis, Test
			Based on the similarly	
			experimental Pathfinder/Sojourner	
		Sappho shall operate for at least 180 Sols	mission + margin for J2 plane	
MIS_REQ_04	Lifetime	upon Mars capture; 444 days total	alignment	Analysis, Test
		Sappho shall maintain communication with		
		Earth and transmit a maximum of 6	Based on Pathfinder (287 MB/ 3	
		gigabytes of data over its lifetime via the	month) and Curiosity (50 GB / 9	
MIS_REQ_05	Communications/Data budget	DSN or a Martian relay satellite	year = 500 MB / 30 sol)	Analysis
			Directly observation from the	
		Sappho shall land on the zenith (Sun-	surface will provide more insight	
		facing) side of Phobos to perform surface	into Phobos's formation than an	
MIS_REQ_06	Lander	operations	orbital survey	Inspection, Test
		Empty requirement to maintain numbering		
MIS_REQ_07	<removed></removed>	scheme		
			The spacecraft will enter Mars's	
		Sappho shall insert itself into Martian orbit,	sphere of influence first, which is	
MIS_REQ_08	Orbit Profile	than transfer to Phobos	much larger than that of Phobos	Analysis
		Sappho shall comply with the payload	Vibration and shock loads during	
		mounting requirements of its launch	launch could destroy a improperly	
MIS_REQ_09	Payload integration	vehicle	mounted spacecraft	Inspection, analysis
		The lander shall include a microscope,		
		mass spectrometer, and electrical/thermal	Studying the regolith will improve	
		conductivity probe to study Phobos's	understanding of the origin of	
MIS_REQ_10	Lander Science	regolith	Phobos and Deimos	Analysis, Test

L1 Reqs

L2 Reqs-1

ID	REQ Short Name	Mission Requirements	Rationale	Verification	Parent REQ ID
L2_REQ_01	Launch Mass	Sappho shall have a total launch mass of 15,000 kg or less	With a 500 kg payload, ESM has 3200 km/s of delta-v	Inspection	MIS_REQ_09
L2_REQ_02	Lander Mass	The Sappho lander shall have a mass of 500 kg or less	See Launch Mass rationale	Inspection	MIS_REQ_09
L2_REQ_03	Launch Vehicle	Sappho shall launch on a vehicle capable of 15 tons to MTO	Likely Falcon Heavy, unless future launchers become available	Inspection	MIS_REQ_08
L2_REQ_04	Volume	Sappho's launch volume shall be less than or equal to 4 m x 4 m x 5 m	Based on ESM and 1 m max lander height, and 4.6x11 m Falcon 9 fairing	Inspection	MIS_REQ_09
L2_REQ_05	Visible Camera	Sappho shall capture color images of at least 600 – 700 nm	Typical asteroids reflect light at the red end of the visible spectrum (approximately 700 nm)	Test	MIS_REQ_01

L2 Reqs-2

ID	REQ Short Name	Mission Requirements	Rationale	Verification	Parent REQ ID
		The Sappho orbiter shall point			
		its instruments nadir during	Instruments must be pointed at	Teet	MIS_REQ_01
L2_REQ_06	Attitude Maintenance	surveying operations	Phopos to capture images	Test	MIS_REQ_02
			33 MB dally equals 6 GB over the mission's lifetime Downlink		
		Sappho shall downlink up to 33	once daily to stay within a		
L2_REQ_07	Downlink	MB of data once per Sol	communications time slot	Test	MIS_REQ_05
		Sappho shall receive	Based on low-bandwidth packet		
		commands from the ground	radio and the minimum of 500		
	Linlink	station at a data rate of at least	bit/s for typical Mars	Tost Analysis	
LZ_NLQ_00	Opinik	300 bl/3	The Ku-hand is used for highly	Test, Analysis	
		RADAR images of Phobos shall	detailed mapping, and		
		be illuminated by a signal in the	interference is unlikely near		
L2_REQ_09	RADAR Frequency	Ku band	Mars	Inspection	MIS_REQ_02
		Sappho's propulsion system	1.9 km/s for capture, and 0.9		
12 PEO 10	Delta-v hudget	shall have a delta-v budget of at	km/s for Phobos transfer with	Analysis	MIS DEO 08
LZ_REQ_10	Della-v buuyet	Sannho shall sunnort secondary	This expensive mission should	Analysis	
		experiments beyond the survey	take full advantage of extra		
L2_REQ_11	Scientific instruments	and spectroscopy	room in technical budgets	Analysis, Test	MIS_REQ_10
		Sappho shall meet its power			
	D 0	requirements using solar panels	Solar power is the only source	A	
L2_REQ_12	Power Source	during all mission phases	of electricity	Anaiysis, Test	MIS_REQ_08

Communication

ID	REQ Short Name	Mission Requirements	Rationale	Verification	Parent REQ ID
COMM_REQ_01	Frequency	All communication shall take place on the x-band	X-Band is used by the DSN, as well as the Perseverance and Curiosity rovers The DSN uses Reed-Solomon to	Analysis	L2_REQ_07/08
COMM_REQ_02	Error Correction	Reed-Solomon error correction shall be applied to all communications	determine which data packets contain errors Ideally an upper limit on the amount of	Analysis	L2_REQ_07/08
	Deta Error Drobability	Total data errors shall not exceed 50 kB	corrupt data/images. Based on Curiosity's average 100 kB per image, and equal to Beavercube's 1e-5 error	Analysia Taat	
COMM_REQ_03	Data Error Probability	of the 6 GB data budget	Tale	Analysis, Test	MIS_REQ_05
COMM_REQ_04	Comms Interfaces	The communication subsystem shall interface with the scientific instruments Sappho shall point its antenna towards	C&DH must be able to send and receive telemetry and scientific data High-gain antennas have a narrow	Analysis	L2_REQ_07/08
COMM_REQ_05	Comms Attitude	Earth during downlink and uplink opportunities The communication subsystem shall	emission pattern and must be pointed precisely	Analysis, Test	L2_REQ_07/08
COMM_REQ_06	Transmit Power	have a transmit power of at least 10 W on X-band The high gain antenna shall have an	Based on Martian satellites with 5-10 W of transmit power The antenna must have line-of-sight to	Analysis, Test	L2_REQ_07/08
COMM_REQ_07	Antenna Rotor	Az-El rotor capable of tracking Earth	successfully transmit/receive	Inspection, Test	L2_REQ_07/08

The ADCS system shall achieve a Based on Cassini pointing accuracy of	
ADCS_REQ_1 Pointing Accuracy pointing accuracy of 20 arcseconds 0.1 mrad (20 arcsec) Analysis, Test L2_REQ_0	6
Sappho shall determine its attitude The lack of a magnetic field	
using sensor fusion across multiple necessitates alternative attitude	
redundant sensors that do not require determination methods; sensor fusion	
ADCS_REQ_2 Attitude Determination a magnetic field helps increase pointing accuracy Inspection L2_REQ_0	6
Slewing the spacecraft requires active	
Sappho shall autonomously maintain control and passive methods such as	
ADCS_REQ_3 Stabilization 3-axis stabilization at all times magnets are not feasible Analysis L2_REQ_0	6
Reaction wheels would likely blow the	
ADCS shall generate external torques mass budget and are likely	
ADCS_REQ_4 Torque Types using thrusters unnecessary Analysis MIS_REQ_	06
Assuming 100 slews in 7 Sols, and	
50% sunlit time. Approximately 1.2	
Sappho shall slew between any two slews per hour to complete the orbital	
ADCS_REQ_5 Slew Rate attitudes in 10 minutes or less survey in the first week. Analysis, Test MIS_REQ_	01/02
Sappho shall perform an autonomous Round-trip communication makes	
ADCS_REQ_6 Landing landing on Phobos manual control impossible Analysis, Test MIS_REQ_	06

ADCS

ID	REQ Short Name	Mission Requirements	Rationale	Verification	Parent REQ ID
EPS_REQ_01	Solar Power	Sappho shall have solar panels that can function on orbit and on Phobos's surface Sappho's lander shall use	The spacecraft requires electrical power during both the orbiter and lander mission phases "The best part is no part " and	Analysis, Test	L2_REQ_12
EPS_REQ_02	Solar Panels	conformal (non-deployable) solar panels on its surface. The service module shall use its ATV-derived solar panels	deployable panels can fail to deploy or get damaged during imaging or landing. ESM comes with its own electrical system	Analysis, Test	L2_REQ_12
EPS REO 03	Solar Power	Sappho shall have a power output	Based on 40% Insight lander output due to conformal panels' limited surface area	Analysis Test	12 REO 12
	Battery Power	Sappho shall have a power output of 150 W from batteries in Mars's	Equivalent to 60% of battery capacity over 0.16 Sols of darkness	Toot	12 PEO 12
EPS_REQ_05	Energy Storage	Sappho shall store 1 kWh of energy in batteries	Based on Insight and Phoenix landers	Inspection	L2_REQ_12
EPS_REQ_06	Launch/Initial Power	powered down until it is separated from the launch vehicle	Requirement of launch vehicle provider	Inspection	MIS_REQ_09

EPS

ID	REQ Short Name	Mission Requirements	Rationale	Verification	Parent REQ ID
PROP_REQ_01	Capture	The service module shall perform orbital capture and rendezvous with Phobos	Sappho needs a large delta-v budget for capture that cannot be provided by the lander	Analysis	MIS_REQ_08
	Secondary	The lander shall have its own secondary propulsion system	"Landing" on Phobos is effectively a rendezvous with		
PROP_REQ_02	thrusters	for maneuvering and landing	station keeping and docking	Analysis	MIS_REQ_08
		shall be used for Sappho's	budget and is designed for		
PROP_REQ_03	ESM	propulsion until jettison	deep space	Analysis	MIS_REQ_08
		The service module shall separate from the lander	The service module is no longer required and is not capable of		
PROP_REQ_04	SM Jettison	following Phobos rendezvous	landing	Testing, Analysis	MIS_REQ_06
			Sappho is completely dependent on thrusters for		
		The Sappho lander shall have sufficient thrusters to land with	landing and attitude control, and failure should not		
PROP_REQ_05	Lander Thrusters	redundancy in case of failure	compromise the mission	Analysis, Test	MIS_REQ_06

Propulsion

ID	REQ Short Name	Mission Requirements Sappho shall have gamma and	Rationale	Verification	Parent REQ ID
PAY_REQ_01	Spectrometers	mass spectrometers on the lander stage	Main scientific objective The spectrometer will not be	Inspection	MIS_REQ_10
PAY REO 02	Regolith transfer	A mechanism shall be developed to transfer regolith to the mass spectrometer	against the surface and therefore needs to transport regolith upwards	Analvsis. Test	MIS REO 10
PAV REO 03	Scintillator	A linear actuator shall lower the scintillation probe against the regolith surface	Scintillators are held against radioactive material; it does not need to be transferred		MIS REO 10
		Sappho shall have interior space and common power/data buses for low-bandwidth	Collaborative experiments will likely fit in the mass budget and hopefully improve the scientific	Analysis, rest	WI3_REQ_10
PAY_REQ_04	Rideshare	collaborative payloads	value of Sappho	Inspection	MIS_REQ_10

Payload

Structure

ID	REQ Short Name	Mission Requirements	Rationale	Verification	Parent REQ ID
STR_REQ_01	Structure Volume	Sappho's structure shall fit within the volume budget	Size is limited by ESM's diameter and the LV fairing	Inspection	MIS_REQ_09
			Reduced points of failure, and Sappho has a very large		
STR_REQ_02	Rigidity	The structure shall be rigid, i.e. no deployable parts	volume budget compared to similar landers	Inspection	EPS_REQ_02
STR REQ 03	Aspect Ratio	footprint with low center of mass for landing stability	ne lander tipping over is a major risk, and a wider aspect ratio provides more solar area	Analysis, Inspection	MIS REQ 06

Subsystem	Mission phase	Risk	Severity	Liklihood
Missian	Due lever ek	Cost overrun or delay that	High	
MISSION	Pre-launch	leads to missed transfer window		Medium
Communication	Dro lounch	Delayed/denied spectrum license	Uigh	Madium
Communication	Pre-launch	or DSN timeslot unavailable	підп	Medium
Mission	Loundh	Launch vehicle failure or	High	Low
IVIISSIOII	Launen	MTO insertion failure	Ingn	
Mission	Loiter - Capture	System checkout failure	High	Low
Propulsion	Coast Capturo	Thrustor/attitude.control failure	Modium	Low
ADCS	Coast - Capture	1 muster/attitude control familie	Medium	LOw
EPS	Coast-EOL	Solar cell or other electrical failure	High	Medium
Propulsion	Capture - Rendezvous	SM failure	High	Medium
Payload	Orbital survey	Orbital survey failure	High	Medium
Propulsion	Landing	SM jettison failure	High	Low
Payload	Post-landing	Scientific instrument failure	Medium	Medium
Communication	Coast - EOL	Communication failure	High	Low
Table 1				

Risk Assessment

Risks pre-mitigation

Liklihood			
High			
			Delay - missed transfer window
Medium		Scientific instrument failure	Denied spectrum/DSN time
			Solar/EPS failure
			SM failure
			Orbital survey failure
			Launcher/MTO failure
Low		Thursday (and and a failure	Checkout failure
LOW		Thruster/aviolities failure	SM jettison failure
			Communication failure
Severity	Low	Medium	High

Table 2

 $RYG\ chart\ pre-mitigation$

Possible mitigations:

- 1. Insurance and sufficient funding, store Sappho until the next transfer window
- 2. Request DSN time and begin spectrum licensing as early as possible
- 3. Launch insurance and thorough integration inspections
- 4. Extensive pre-flight testing, design C&DH to have the maximum possible level of remote control of spacecraft systems
- 5. Redundant attitude thrusters and avionics
- 6. Build two redundant EPS systems that split power requirements; a single failure can only reduce the power budget by half
- 7. Use the existing ESM, which has flight heritage and is designed for deep space

- 8. Choose a landing site based on pre-existing imagery of Phobos
- 9. Very unlikely; remain in Mars orbit and attempt to salvage the mission
- 10. Design experiments to be passive and have as few moving parts as possible
- 11. Use redundant communication systems and two redundant antenna rotors

Subsystem	Mission phase	Risk	Severity	Liklihood
Mission	Pre-launch	Cost overrun or delay that leads to missed transfer window	Medium	Medium
Communication	Pre-launch	Delayed/denied spectrum license or DSN timeslot unavailable	High	Low
Mission	Launch	Launch vehicle failure or MTO insertion failure	High	Low
Mission	Loiter - Capture	System checkout failure	Medium	Low
Propulsion ADCS	Coast - Capture	Thruster/attitude control failure	Low	Low
EPS	Coast-EOL	Solar cell or other electrical failure	Medium	Medium
Propulsion	Capture - Rendezvous	SM failure	High	Low
Payload	Orbital survey	Orbital survey failure	Low	Medium
Propulsion	Landing	SM jettison failure	High	Low
Payload	Post-landing	Scientific instrument failure	Medium	Medium
Communication Table 3	Coast - EOL	Communication failure	Low	Low

Risks post-mitigation

Liklihood			
High			
Medium	Orbital survey failure	Delay - missed transfer window	
		Solar/EPS failure	
		Scientific instrument failure	
Low	Thruster/avionics failure Communication failure	Checkout failure	Denied spectrum/DSN time
			Launcher/MTO failure
			SM failure
			SM jettison failure
Severity	Low	Medium	High

Table 4